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On a Class of Low-Reflection Transmission-Line
Quasi-Gaussian Low-Pass Filters and Their

Lumped-Element Approximations
Antonije R. Djordjević, Alenka G. Zajić, Aleksandra S. Steković, Marija M. Nikolić, Zoran A. Marićević, and

Marcel F. C. Schemmann

Abstract—Gaussian-like filters are frequently used in digital
signal transmission. Usually, these filters are made of lumped
inductors and capacitors. In the stopband, these filters exhibit a
high reflection, which can create unwanted signal interference. To
prevent that, a new low-reflection ladder network is introduced
that consist of resistors, inductors, and capacitors. The network
models fictitious transmission lines with Gaussian-like amplitude
characteristics. Starting from the analysis of this network, a pro-
cedure is developed for synthesis of a new class of lumped-element
RLC filters. These filters have transmission coefficients similar to
the classical Bessel filters. In contrast to the Bessel filters, the new
filters exhibit a low reflection both in the stopband and passband,
they have a small span of element parameters, and they are easy
for manufacturing and tuning.

Index Terms—Distributed parameter filters, impedance
matching, linear phase filters, low-pass filters.

I. INTRODUCTION

I N DIGITAL signal transmission, Gaussian-like frequency-
domain transfer functions are usually desirable because they

do not yield overshoots and ringing in the time domain. For
practical filter design, the leading representatives for this kind of
low-pass filters are the Bessel (Bessel–Thompson) filters, which
have a maximally flat group delay [1]. Lumped-element realiza-
tions of such filters and their implementations in the microwave
range have been well developed and known, e.g., [2] and [3].

These filters are, theoretically, lossless. For a low-pass filter
of this kind, at low frequencies, the magnitude of the transfer
function is close to one (0 dB) and the magnitude
of the reflection coefficient is close to zero.
The filters have a mild transition to the stopband, where the
magnitude of the transfer function becomes close to zero, but
the magnitude of the reflection coefficient becomes close to one.
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Hence, the classical filters exhibit a high reflection (except near
the zero frequency), which is undesirable in many digital-circuit
applications, as it can create signal interference.

A filter that exhibits little or no reflection both in the passband
and stopband can be named a matched filter. However, the term
“matched filter” has a different meaning in communications.
Hence, we shall refer to such filters as low-reflection filters.

To achieve a good matching, the network must be lossy.1

Matching at one port of the filter can be achieved by making a
diplexer with a dummy complementary filter or using hybrids
[4]. This procedure can yield a good selectivity, but has the
disadvantage of increased complexity. To make a symmetrical
low-reflection filter, the complexity is even further increased.

Losses in filter elements have been reported in [5] to improve
matching in the passband. However, this concept has not been
further elaborated and, as far as the authors could search, there
is no published theoretical literature that covers synthesis of
low-reflection filters. Recently, Gaussian-like filters with lossy
elements have been reported (e.g., [6]) where the magnitude of
the reflection coefficient is kept reasonably low both in the pass-
band and stopband at both filter ports, but details of the design
have not been published.

This paper has several goals. Section II starts from the theory
of the classical lossy transmission lines and reveals a deriva-
tion of a new class of distributed-parameter (transmission-line)
low-reflection filters that have Gaussian-like amplitude charac-
teristics. Section III presents a design procedure for lumped-ele-
ment networks that approximate transmission-line Gaussian fil-
ters. A particular case is emphasized that yields a flat group
delay. Section IV presents experimental results for a microstrip
implementation and compares them with theoretical data.

II. LOSSY TRANSMISSION LINES WITH

GAUSSIAN CHARACTERISTIC

We start from the classical lossy transmission line, whose pri-
mary parameters are the per-unit-length inductance , capaci-
tance , resistance , and conductance . The telegrapher’s

1For a lossless network, js j + js j = js j + js j = 1, so matching
cannot be achieved in the stopband.
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Fig. 1. Lumped-element ladder-network approximation of a lossy
transmission line.

equations for this line are derived starting from the lumped-ele-
ment model shown in Fig. 1, where the elements of a half-cell2

are

(1)

(2)

(3)

(4)

and is the length of the line approximated by the half-cell.
Note that the inductor and resistor (which models conductor
losses) are connected in series, whereas the capacitor and the
resistor (which models dielectric losses) are connected in par-
allel. By letting , a network with distributed parameters
is obtained, and the Kirchhoff voltage and current laws are sub-
stituted by differential (telegraphers’) equations.

We assume the parameters , , , and to be frequency in-
dependent and to satisfy Heavyside’s condition

(5)

The per-unit length impedance and admittance of the line are
and , respectively, where is the

angular frequency. The characteristic impedance of the line is

(6)

Under condition (5), (6) yields , so the
characteristic impedance is purely resistive and frequency-in-
variant. The propagation coefficient is

(7)

Under condition (5), the attenuation coefficient and
the wave velocity are also independent
of frequency. The phase coefficient is a linear function of
frequency.

If we consider this line as a two-port network and if both
port nominal impedances are equal to , the network is
perfectly matched, i.e., the intrinsic reflection coefficients are

. If the line length is , the transfer function of
the network is

(8)

The magnitude of the transfer function is
. It can be expressed in decibels as

dB (9)

2A half-cell consists of one series branch and one adjacent shunt branch.

Fig. 2. Lumped-element ladder-network approximation of the complete
Gaussian transmission line.

where is the attenuation (insertion loss) of the network. If (5)
is fulfilled, then the attenuation is dB and
it is independent of the frequency. Hence, the lossy transmis-
sion line represents a broad-band (all-pass) attenuator, with a
frequency-invariant attenuation. The phase (in radians) of the
transfer function is

(10)

If (5) is fulfilled, the phase is and it is a linear
function of frequency. The group delay is con-
stant, and the network is perfectly dispersionless.

A lumped-element approximation to this transmission line
can be made in the form of a ladder network. This is the same
network as shown in Fig. 1 with a finite number of half-cells.
The lumped-element network is a good approximation of the
transmission line at lower frequencies. As the frequency in-
creases, the lumped-element network behaves like a low-pass
filter with the cutoff angular frequency

(11)

Hence, for a given transmission line, the approximation will
hold up to higher frequencies if the lumped-element network
contains more half-cells, i.e., if is smaller.

By a simple rearrangement of elements of the network of
Fig. 1, we obtain a low-pass filter, shown in Fig. 2, whose
transfer characteristic is similar to the ideal Gaussian filter,
and, hence, akin to the Bessel filters and finite-order Gaussian
filters.

We can formally apply the same analysis as for the classical
transmission line. The per-unit-length impedance of the line is

and the per-unit-length admittance is
. Assuming (5) to be fulfilled, the characteristic

impedance of the line is again independent of frequency, i.e.,

(12)

We introduce the breakpoint angular frequency, i.e.,

(13)

Below this frequency, the real parts in the denomina-
tors of the per-unit-length impedance and admittance
dominate. Beyond this frequency, the imaginary parts
dominate. The per-unit-length impedance and admit-
tance are now and
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, respectively. The propa-
gation coefficient can be written in the form

(14)

because . The approximation is valid when .
The real part of the propagation coefficient, i.e., the attenuation
coefficient of the line, is

(15)

When , the attenuation of the line follows the Gaussian
form, i.e., it is proportional to the frequency squared. When the
frequency approaches , the amplitude characteristic flattens
out, tending to a constant (i.e., ). The imaginary part
of the propagation coefficient, i.e., the phase coefficient, is

(16)

When , the phase characteristic is linear, i.e.,
, the phase velocity is approximately constant and equal

to , and the group delay is flat.
The amplitude and phase characteristics of the line show

that the line can be used as a low-pass filter that approximates
Gaussian and Bessel filters.

The transmission line derived from Fig. 2 (when )
will be referred to as the complete Gaussian line because losses
are introduced both in series and parallel branches.

We introduce the incomplete Gaussian line, which is derived
from the lumped-element network shown in Fig. 3. In this figure,
resistors exist only in shunt branches so that the total number
of resistors is halved when compared with Fig. 2. (By duality,
resistors can be located only in series branches.)

The per-unit-length impedance and admittance of the incom-
plete Gaussian line are and

, respectively, where, following (13),
. The characteristic impedance of the incomplete

Gaussian line depends on frequency

(17)

Fig. 3. Lumped-element ladder-network approximation of the incomplete
Gaussian transmission line.

Fig. 4. Magnitude of the transmission coefficient.

where the approximate expression is valid at lower frequencies
when . The propagation coefficient is

(18)

We compare (14) and (18). The real part of the propagation coef-
ficient has, in both cases, a Gaussian behavior at lower frequen-
cies. The deviation from the ideal characteristic as is
somewhat larger for (14) than for (18) because the coefficients
with the term are 1 and 0.625, respectively. The phase
coefficient in both (14) and (18) is linear at lower frequencies,
and it starts deviating when . The deviation from the
linear phase in (14) is larger than in (18) because the coeffi-
cients with the term are 1 and 0.375, respectively.

Fig. 4 shows magnitudes of transmission coefficients of the
ideal Gaussian filter, the eighth-order Bessel and Gaussian
lumped-element filters [1] (labeled Bessel 8 and Gauss 8,
respectively), complete and incomplete Gaussian transmission
lines for (labeled Complete GTL and Incomplete
GTL, respectively), and their lumped-element approximations
of the eighth-order (labeled Complete 8 and Incomplete 8,
respectively). At the normalizing angular frequency , the
transmission coefficient is 3 dB. The order of a filter is twice
the number of half-cells in Figs. 2 and 3.

Note that if is increased, the transmission coefficients of
the complete and incomplete Gaussian line (as well as of their
lumped-element approximations) follow much closer the ideal
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Gaussian filter or the Bessel filter than shown in Fig. 4. For a
given value of , the incomplete Gaussian line has a steeper
transfer function than the corresponding complete line. The in-
complete line does not have an asymptotic value for the inser-
tion loss, i.e., it behaves like a low-pass filter with an infinitely
decaying skirt.

III. DESIGN PROCEDURE FOR LUMPED-ELEMENT FILTERS

We present two design cases. The first one is the design of
a lumped-element network whose characteristics closely follow
the Gaussian line up to a certain frequency. The second design is
an optimized filter, whose group-delay characteristic is superior
to the Gaussian line. In both cases, we consider complete and
incomplete Gaussian lines.

A. Approximation of Complete Gaussian Line

As the first step, we design a complete Gaussian line given
the nominal impedance (equal to ), the 3-dB attenuation fre-
quency ( viz. ), and the breakpoint fre-
quency ( viz. ). We have to evaluate the parameters
, , , , and . There is a total of four conditions, i.e., the three

requests plus the condition (5), and a total of five parameters. To
simplify the design, we reduce the number of parameters to four
by defining the total parameters of the line , ,

, and .
To evaluate the total parameters of the line, we start from the

attenuation of the two-port network. According to (9) and (15)

dB (19)

Since dB at , using (12), (13), and (19), we obtain

(20)

(21)

(22)

(23)

As the second step, we find a lumped-element approximation
to this line according to the scheme in Fig. 2. We assume that
the ladder network approximation consists of identical half-
cells. The values of the lumped elements are ,

, , and . All the elements in this
design have identical values, which may be advantageous for
manufacturing. However, to make a symmetrical network, it is
possible to have a symmetrical topology, as in Fig. 5. A dual
alternative is also possible, beginning and ending with a series
branch.

Fig. 5. Example of the topology of lumped-element filters derived from the
complete Gaussian line (N = 4).

Fig. 6. Half-cell of the complete Gaussian line in an infinite array.

To have a good approximation of the transmission-line be-
havior, the number should be selected to keep the cutoff
frequency of the LC filter high enough (e.g., close to ).
Hence, the low-pass behavior of the LC portion does not mask
the quasi-Gaussian behavior of the network. Using (11), we ob-
tain .

B. Optimized Design Based on Complete Gaussian Line

Lowering the frequency , the filter attenuation becomes
steeper than for the Gaussian line within a certain frequency
band, and it also flattens out the group delay. Optimization of
filters of various orders shows that the key factor for improving
the filter performance is the proper choice of the attenuation in-
troduced by a half-cell. To that purpose, we express the conduc-
tance in shunt branches as

(24)

so that

(25)

where is a parameter. To find the optimal value of that yields
the most linear phase characteristic, we consider one half-cell in
an infinite array of identical half-cells (Fig. 6).

The half-cell consists of a series impedance
and a parallel admittance . On the

right, the cell is backed by the infinite array. Let be the input
impedance looking into the array. The impedance looking into
the cell is also because the network is infinite. Hence,

(26)

Solving this equation results in

(27)
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The sign ( or ) should be selected to obtain a positive
real part of . The current transfer function of the half-cell
in Fig. 6 is

(28)

This function can be represented as , where is the
amplitude and is the phase of transfer function. We extract
the linear frequency term from the phase, consider the residual
phase, and vary the parameter to obtain the flattest response.
The optimum is numerically found to be

(29)

when the first four derivatives of residual phase are zero at
. Now, the remaining elements of the half-cell are

(30)

(31)

The corresponding cutoff frequency is

(32)

Going back to the actual design, the number of half-cells is fi-
nally evaluated as

(33)

Equation (33) is the starting point for the design. Once we have
selected an integer value for , we have to recompute

(34)

to account for the discretization. From (12) and (32), we obtain
the remaining equations needed for the design as follows:

(35)

(36)

The lumped-element network obtained using this procedure
can thereafter be further optimized using a circuit simulator. By
analyzing various lumped-element filters of the topology shown
in Fig. 5, it is found that the optimum value of the conductance
in the first and last shunt branches is approximately . This
choice provides a low reflection at very high frequencies.

Fig. 7. Example of the topology of lumped-element filters derived from the
incomplete Gaussian line (N = 4).

Fig. 8. Half-cell of the incomplete Gaussian line in an infinite array.

C. Approximation of Incomplete Gaussian Line

In a similar way as in Section III-A, one can design a lumped-
element filter (Fig. 7) that approximates an incomplete Gaussian
transmission line. We start from given , , and . Fol-
lowing the same procedure as before, we evaluate the total pa-
rameters of the incomplete Gaussian line as

(37)

(38)

(39)

As the second step, we find a lumped-element approxima-
tion to the incomplete Gaussian line. We assume that the ladder
network approximation consists of identical half-cells. The
values of the elements are , , and

, where .

D. Optimized Design Based on Incomplete Gaussian Line

To find the optimal value for the elements in the ladder net-
work from Section III-C, we represent the conductance in shunt
branches by (24). The impedance of the series branch of one
half-cell (Fig. 8) is and the admittance of the parallel
branch is . Following the same approach
as before, we analyze one half-cell in an infinite array of iden-
tical half-cells. The optimization yields the optimal value for the
parameter as follows:

(40)

The final result of (32) is still valid so that the number of
half-cells for the actual design is given by

(41)

The remaining design procedure is the same as in Section III-B.



1876 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 51, NO. 7, JULY 2003

Fig. 9. Microstrip implementation of the filter from Fig. 7.

Fig. 10. Magnitude of the transmission coefficient.

IV. EXAMPLE

We present design results for a lumped-element filter based
on the incomplete Gaussian line (Fig. 7). Requests are

, GHz, and GHz. Using (37)–(41),
we calculate the number of half-cells ( ) (filter of order
8) and the element values nH, pF, and

. As mentioned in Section III-B, the resistances
of the resistors in the first and last shunt branches (denoted by

) should be .
A prototype of the filter was developed in the microstrip

technique. The printed pattern and resistances are shown in
Fig. 9. The filter was made on a substrate of relative permittivity
2.33 and thickness 0.254 mm (10 mil). The inductors were
made as narrow microstrips (trace width 0.15 mm) and capaci-
tors as wide microstrips (trace width 2.5 mm). High-frequency
surface-mount device (SMD) resistors (size 0603) were used.
The printed pattern and resistances were optimized to include
the parasitic effects of traces, junctions, and SMD components.
These effects significantly increase the resistances, make
sharper the slope of the transfer function magnitude, and create
parasitic passbands at very high frequencies.

Fig. 10 shows the measured magnitude of the transmission
coefficient compared with the results of computer simulation3

and theoretical results for the classical Bessel filter of the eighth
order. Fig. 11 shows the phase of the transmission coefficient
with the linear term extracted and Fig. 12 shows the magnitude
of the reflection coefficient. Excellent agreement between the
theoretical and experimental results is obtained, although the
theoretical model does not include the effect of subminiature
A (SMA) connectors. The experiments have shown the filters
fairly insensitive to production tolerances and easy for tuning.

3Touchstone 1.45, EEsof, Westlake Village, CA, 1985.

Fig. 11. Residual phase of the transmission coefficient.

Fig. 12. Magnitude of the reflection coefficient.

We do not compare our results with other data for low-reflec-
tion filters (e.g., [6]), as all other filters are of very low orders.
Their transfer functions are inferior to those of the Bessel filters
of orders 3 or 4. In contrast to this, using the present approach,
one can readily design and produce filters of virtually any order.

V. CONCLUSION

This paper proposes a new low-reflection ladder network
that consists of resistors, inductors, and capacitors. The net-
work models fictitious transmission lines with Gaussian-like
amplitude characteristics. A theoretical analysis of these lines
is presented based upon which a procedure for synthesis of
low-reflection resistive filters is developed. These filters have
transmission coefficients similar to the classical Bessel filters,
but in contrast to them have low reflection both in the stopband
and passband. The new filters are convenient for manufacturing
because the range of element parameters is small. In a typical
design example given in this paper, all inductances are equal,
capacitances are in the range of 2 : 1 (as opposed to more
than 10 : 1 for the classical Bessel and Gaussian filters), and
resistances are in the range of 3 : 1. The filters have been found
fairly insensitive to element tolerances and easy for tuning. A
patent application has been filed for the basic design. Further
investigation is planned to extend this study to bandpass filters.
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